
Lab	5:		Milestone	1	&	2	 Imperial	College	London	

V2.0	-	PYK	Cheung,	21	Feb	2018	 	 	 	 Lab	5		-		 1	

Dyson	School	of	Design	Engineering	

Imperial	College	London	

DE2.3			Electronics	2	

Lab	Experiment	5:	Team	Project	Session	1		

(webpage:	http://www.ee.ic.ac.uk/pcheung/teaching/DE2_EE/)		

Introduction	

You	have	finished	all	formal	laboratory	sessions	for	DE2.3.		From	now,	you	should	
focus	only	on	the	Team	Project	during	the	lab	sessions.		This	document	is	intended	to	
offer	you	some	guidance	and	hints	as	to	how	to	go	about	the	complex	task	of	
achieving	the	goals	of	Milestones	1	and	2.		Before	that,	let	us	do	one	more	exercise	on	filters.	

Exercise	1:	Moving	Average	filter	

This	exercise	will	be	conducted	using	Matlab	alone.	The	goal	 is	 for	you	to	explore	the	 low	pass	 filtering	
effect	of	the	moving	average	filter.	

Download	 the	 music	 file:	 bgs.wav	 from	 the	 course	 webpage.	 This	 is	 a	 short	 segment	 of	 music	 from	
“Staying	Alive”.	

Create	the	following	Matlab	script	as	lab5_ex1.m.	

	

When	 you	 compare	 the	 noise-corrupted	 music	 with	 the	 filtered	 version,	 you	 should	 notice	 a	 slight	
reduction	in	the	noise.	



Lab	5:		Milestone	1	&	2	 Imperial	College	London	

V2.0	-	PYK	Cheung,	21	Feb	2018	 	 	 	 Lab	5		-		 2	

Modify	 lab5_ex1a.m	 to	 lab5_ex1b.m	 so	that	you	can	use	a	variable	number	of	taps.	 	Change	this	to	10	
and	20,	and	see	how	the	filtered	music	sound.	(Solution	in	Appendix	A.)	

Milestone	1	

By	the	end	of	today,	you	should	have	put	together	your	Segway	with	the	stabilizer	installed.		You	can	
design	your	own	if	you	wish,	but	I	also	have	some	laser	cut	stabilizers	for	you	to	use.	

You	also	need	to	write	the	controlling	program	in	MicroPython	to	drive	the	Segway	using	the	AdaFruit	
mobile	App	via	Bluetooth.	

Sampling	microphone	signal	using	interrupt	

Although	you	are	not	expected	to	complete	Milestone	2	until	the	end	of	February,	you	should	read	
through	the	instruction	below	concerning	how	to	sample	and	buffer	N	microphone	signals	under	the	
control	of	a	timer	interrupt.		The	timer	is	programmed	to	issue	an	interrupt	at	an	8kHz	sampling	rate.	That	
is,	an	interrupt	is	generated	EVERY	125	µsec.		

The	code	to	do	this	is	shown	below	and	is	stored	in	the	file	‘buffer.py’,	which	you	can	download	from	the	
course	webpage.	

This	program	will	store	away	N	samples	in	a	pre-allocated	array	‘s_buf[.]’	in	the	interrupt	service	routine	
‘isr_sampling(.)’.		Once	set	up,	this	will	happen	automatically	in	the	background	without	further	
instruction	from	the	main	program	loop	in	the	foreground.	

We	also	need	a	way	to	tell	the	main	program	loop	that	the	buffer	is	full,	i.e.	N	samples	have	been	taken.		
To	do	this,	we	use	a	status	flag	(also	known	as	a	‘semaphore’)	to	indicate	that	N	samples	have	been	taken.		

The	main	program	loop	simply	wait	until	the	buffer	is	filled,	and	then	it	displays	the	buffer	content	on	the	
OLED	display	the	function	‘plot_signal(.)’.	

Finally,	we	have	created	an	output	pin	object	on	‘X5’,	which	is	connected	to	the	top	BNC	connector	(used	
as	analogue	output	in	earlier	experiments).		We	then	toggle	this	pin	in	the	main	program	loop	to	indicate	
the	time	it	takes	for	the	main	loop	to	go	around	the	loop.		The	time	it	takes	for	the	semaphore	to	go	high	
is	the	half	period	(i.e.	it	toggles	every	N	x	125	µsec).	

If	you	now	measure	the	signal	on	X5,	you	will	see	that	it	is	much	slower	than	expected.		Why?		Because	
driving	the	OLED	display	is	slow!		If	you	now	comment	out	the	OLED	display	statements,	you	will	see	that	
X5	signal	is	as	expected.	

You	should	find	this	buffer	program	useful	when	you	write	the	code	to	synchronise	the	movement	of	the	
Segway	to	the	beat	of	the	music.	

Milestone	2	(leading	to	3)	

For	milestone	2,	you	should	program	the	Segway	to	dance	to	music	WITHOUT	balancing	(because	the	
stabilizer	will	keep	the	Segway	upright).		Before	you	attempt	Milestone	2,	pick	a	piece	of	music	that	has	a	
strong	beat.		Your	Segway	will	dance	to	this	music	in	real-time.	Last	year,	all	groups	were	told	to	use	
“Staying	Alive”	by	the	Bee	Gees.	This	piece	has	very	clear	beat	and	is	useful	to	test	your	algorithm.		
However,	you	are	encouraged	to	choose	your	own.	

Milestone	2	is	a	relatively	large	task,	which	can	be	broken	down	into	the	following	sub-tasks:	

1) Process	the	music	signal	offline	using	Matlab	to	derive	the	beat	period	(i.e.	how	long	between	
beats	and	therefore	the	duration	of	each	dancing	step);	

2) Determine	the	colour,	mood,	shape	of	the	music	through	the	spectrum	of	around	a	few	second	of	
the	signal	(in	Matlab);	



Lab	5:		Milestone	1	&	2	 Imperial	College	London	

V2.0	-	PYK	Cheung,	21	Feb	2018	 	 	 	 Lab	5		-		 3	

3) Map	the	spectrum	to	dancing	steps	(automatically	if	possible)	and	code	this	as	ASCII	text	file	to	be	
transferred	to	the	microSD	card;	

4) Write	the	MicroPython	program	on	PyBench	to	synchronize	the	Segway’s	movement	to	the	beat	
of	music.		There	are	a	few	possible	approaches	to	this,	some	easy,	and	some	much	harder.	This	is	
discussed	below.		Once	a	beat	is	detected,	flash	one	or	more	of	the	four	LEDs.		You	can	therefore	
test	your	music	analysis	and	the	dance	routine	WITHOUT	anything	moving!	

For	the	synchronization	task,	you	may	consider	the	following	methods:	

a) Simply	wait	until	you	detect	the	first	beat.		Since	you	have	worked	out	the	exact	beat	period,	and	
if	‘Staying	Alive’	has	a	steady	beat,	you	can	use		

tic = pyb.millis() 
….. 
elapsed_time = pyb.millis() – tic 

to	determine	exactly	when	the	next	beat	is.		The	disadvantage	is	that	timing	error	will	
accumulated.		However,	you	will	probably	be	proximately	right,	particularly	at	the	beginning.	

b) You	can	find	the	ratio	of	instantaneous	energy	over	a	20	msec	window	to	the	local	average	energy	
over	1	or	2	second	moving	window,	and	detect	the	start	of	the	beat	when	this	ratio	exceeds	some	
threshold.		

c) To	reduce	the	chance	of	false	beat	detection,	you	can	look	for	the	beat	only	after	a	certain	period	
of	time	has	elapsed	since	the	last	detect	beat.	

	 	



Lab	5:		Milestone	1	&	2	 Imperial	College	London	

V2.0	-	PYK	Cheung,	21	Feb	2018	 	 	 	 Lab	5		-		 4	

Appendix	B:		Solution	to	Excise	1b	

	

	 	



Lab	5:		Milestone	1	&	2	 Imperial	College	London	

V2.0	-	PYK	Cheung,	21	Feb	2018	 	 	 	 Lab	5		-		 5	

Appendix	B			–	Code	for	“buffer.py”	
	

	

	



Lab	5:		Milestone	1	&	2	 Imperial	College	London	

V2.0	-	PYK	Cheung,	21	Feb	2018	 	 	 	 Lab	5		-		 6	

	

	

	

	


